Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.)
نویسندگان
چکیده
Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in six environments and evaluated for Fe, Zn, PC, and TKW. The population showed the continuous distribution for all the four traits, that for pooled Fe and PC was near normal, whereas, for pooled Zn, RILs exhibited positively skewed distribution. A genetic map spanning 2155.3cM was constructed using microsatellite markers covering the 21 chromosomes and used for QTL analysis. 16 quantitative trait loci (QTL) were identified in this study. Four QTLs (QGFe.iari-2A, QGFe.iari-5A, QGFe.iari-7A and QGFe.iari-7B) for Fe, five QTLs (QGZn.iari-2A, QGZn.iari-4A, QGZn.iari-5A, QGZn.iari-7A and QGZn.iari-7B) for Zn, two QTLs (QGpc.iari-2A and QGpc.iari-3A) for PC, and five QTLs (QTkw.iari-1A, QTkw.iari-2A, QTkw.iari-2B, QTkw.iari-5B and QTkw.iari-7A) for TKW were identified. The QTLs together explained 20.0%, 32.0%, 24.1% and 32.3% phenotypic variation, respectively, for Fe, Zn, PC and TKW. QGpc.iari-2A was consistently expressed in all the six environments, whereas, QGFe.iari-7B and QGZn.iari-2A were identified in two environments each apart from pooled mean. QTkw.iari-2A and QTkw.iari-7A, respectively, were identified in four and three environments apart from pooled mean. A common region in the interval of Xgwm359-Xwmc407 on chromosome 2A was associated with Fe, Zn, and PC. One more QTL for TKW was identified on chromosome 2A but in a different chromosomal region (Xgwm382-Xgwm359). Two more regions on 5A (Xgwm126-Xgwm595) and 7A (Xbarc49-Xwmc525) were found to be associated with both Fe and Zn. A QTL for TKW was identified (Xwmc525-Xbarc222) in a different chromosomal region on the same chromosome (7A). This reflects at least a partly common genetic basis for the four traits. It is concluded that fine mapping of the regions of the three chromosomes of A genome involved in determining the accumulation of Fe, Zn, PC, and TKW in this mapping population may be rewarding.
منابع مشابه
Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers
Mineral nutrient malnutrition, particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Biofortification of food crops is the best approach for conciliating the micronutrient deficiencies. Understanding the genetic basis of their accumulation is the preconditions for enhancing of these micronutrients. In our study, a mapping population of a set of 118 recombinant inbr...
متن کاملMicrowave Synthesis of Fe2 O3 and ZnO Nanoparticles and Evaluation Its Application on Grain Iron and Zinc Concentrations of Wheat (Triticum aestivum L.) and their Relationships to Grain Yield
Fe2O3 and ZnO nanoparticles were synthesized by a fast microwave method. Nanostructures were characterized by X-ray diffraction and scanning electron microscopy. The goal of bio-fortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. The micronutrients magnesium (Mg), manganese (Mn) and copper (Cu), boron (B) and calcium (Ca) are essen...
متن کاملبررسی عناصر روی و منیزیم بر خصوصیات زراعی و جوانهزنی بذر گندم نان (Triticum aestivum L. cv. Sivand)
In order to study the effect of zinc and magnesium on agronomic and seed germination traits of wheat (Sivand cultivar), the current study was carried out at Mahidasht Agricultural Research Station in Kermanshah over the years 2012 and 2013. The experiment was conducted as factorial based on completely randomized block design with three replications. The treatments consisted of four levels of zi...
متن کاملEffects of Nano Iron Oxide on the Yield and Some Physiological and Biochemical Traits of Wheat (Triticum aestivum L.) under Rainfed and Supplementary Irrigation Conditions
In order to study the effects of supplementary irrigation and nano iron oxide on the grain yield, and some physiological and biochemical traits of wheat (Triticum aestivum L.) under rain fed conditions, a factorial experiment was conducted based on a randomized complete block design with three replications in Agricultural Research Station of Ardabil, Northwest of Iran, in 2016. Factors inclu...
متن کاملGenetic Analysis and QTLs Identification of Some Agronomic Traits in Bread Wheat (Triticum aestivum L.) under Drought Stress
In order to study the genetic conditions of some agronomic traits in wheat, a cross was made between Gaspard and Kharchia varieties. F2, F3 and F4 progenies with parents were evaluated under drought conditions. Three-parameter model [m d h] considered as the best fit for number of fertile tiller and flag leaf length using generations mean analysis method. For number of grain per spike and main ...
متن کامل